Learning Viewpoint Invariant Representations of Faces in anAttractor
نویسندگان
چکیده
In natural visual experience, diierent views of an object tend to appear in close temporal proximity as an animal manipulates the object or navigates around it. We investigated the ability of an attractor network to acquire view invariant visual representations by associating rst neighbors in a pattern sequence. The pattern sequence contains successive views of faces of ten individuals as they change pose. Under the network dynamics developed by Griniasty, Tsodyks & Amit (1993), multiple views of a given subject fall into the same basin of attraction. We use an independent component (ICA) representation of the faces for the input patterns (Bell & Sejnowski, 1995). The ICA representation has advantages over the principal component representation (PCA) for viewpoint-invariant recognition both with and without the attractor network, suggesting that ICA is a better representation than PCA for object recognition.
منابع مشابه
Learning Viewpoint Invariant Face Representations from Visual Experience by Temporal Association
In natural visual experience, different views of an object or face tend to appear in close temporal proximity. A set of simulations is presented which demonstrate how viewpoint invariant representations of faces can be developed from visual experience by capturing the temporal relationships among the input patterns. The simulations explored the interaction of tempor~smoothing of activity signal...
متن کاملLearning viewpoint - invariant face representations from visual experience in an attractor network
In natural visual experience, different views of an object or face tend to appear in close temporal proximity as an animal manipulates the object or navigates around it, or as a face changes expression or pose. A set of simulations is presented which demonstrate how viewpoint-invariant representations of faces can be developed from visual experience by capturing the temporal relationships among...
متن کاملLearning viewpoint-invariant face representations from visual experience in an attractor network.
In natural visual experience, different views of an object or face tend to appear in close temporal proximity as an animal manipulates the object or navigates around it, or as a face changes expression or pose. A set of simulations is presented which demonstrate how viewpoint-invariant representations of faces can be developed from visual experience by capturing the temporal relationships among...
متن کاملLearning Viewpoint Invariant Face Representations from Visual Experience by Temporal Association
In natural visual experience, different views of an object or face tend to appear in close temporal proximity. A set of simulations is presented which demonstrate how viewpoint invariant representations of faces can be developed from visual experience by capturing the temporal relationships among the input patterns. The simulations explored the interaction of temporal smoothing of activity sign...
متن کاملSelf-Organization of Viewpoint Dependent Face Representation by the Self-Supervised Learning and Viewpoint Independent Face Recognition by the Mixture of Classifiers
This paper proposes a viewpoint invariant face recognition method in which several viewpoint dependent classifiers are combined by a gating network. The gating network is designed as autoencoder with competitive hidden units. The viewpoint dependent representations of faces can be obtained by this autoencoder from many faces with different views. Multinomial logit model is used for the viewpoin...
متن کامل